

Dutch Metrology Institute

EMPIR 🔅 EURAMET

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

A calibrated physical flow standard for medical perfusion imaging

Flomeko, Lisbon, 26 June 2019

Gertjan Kok, VSL, gkok@vsl.nl

EMPIR 15HLT05 PerfusImaging (July 2016 – June 2019)

G. Kok¹, N. Pelevic¹, A. Chiribiri², X. Milidonis², M. Nazir², M. Capstick³, S. Drost⁴, C. Poelma⁴, T. Schaeffter⁵ ¹VSL-Delft, ²KCL-London, ³ZMT-Zürich, ⁴TU-Delft, ⁵PTB-Berlin

VSL Background

- Good blood flow through heart muscle is of vital importance for well being (otherwise heart attack)
- Current practice: qualitative imaging of heart muscle with e.g. MRI, PET, CT.
- Image interpretation can be dependent on protocol, instrument, software, settings, operator (physician)
- In the EMPIR project 15HLT05 Metrology for multi-modality imaging of impaired tissue perfusion, a phantom has been developed that simulates the heart tissue and that can be used to assess the performance of imaging modalities like MRI, PET and CT
- PTB: coordinating work, phantom testing
- KCL: experimental work, various extensions of the phantom, data analysis
- ZMT: engineering and production of phantom
- TUD: measuring reference values of flow rates using UIV
- VSL: CFD simulations, some aspects of data analysis, possibility for traceable flow meter calibration

Dutch Metrology Institute

TNT

Metrology

26 June 2019

Institute

VSL CFD simulation of flow through phantom myocardium

Flow Standard for Perfusion Imaging - Flomeko 2019

SL Reference flow measurement per channel

KING'S LONDON

- UIV (ultrasound imaging velocimetry) at TUD
- 3D printed material turned out to be too thick for good UIV measurements
- Uncertainty > 10 %

- PC-MRI (Phase Contrast MRI) at KCL
- Uncertainty about 10 %
- Verification of linear decrease of flow rate with radius of in total 30 %, independent of flow rate (±8 %)

Dynamic Contrast Enhanced (DCE) MRI protocol:

- A bolus of contrast agent (CA) is injected in the phantom or patient.
- The dynamic signal is measured in a slice both at the aorta and at the myocardium.
- From the series of images the perfusion, i.e. flow rate normalized by tissue volume, is estimated.

Perfusion MRI at KCL – Dyanimic Contrast Enhanced MRI scans

SL Questioning the standard model...

- Is the standard data analysis approach valid for the phantom?
- Is it reasonable to expect a 30 % variation in perfusion rate over the cross section?
- To what corresponds a voxel-wise or segment-wise perfusion value in the mathematical model?
- What is the definition of a voxel-wise or segment-wise perfusion value?

VSL Model worries

- At least for the phantom it is rather the **outflow concentration** $c_{out}(t)$ than the average system concentration $c_{sys}(t)$ which is measured (and $c_{sys}(t) \neq c_{out}(t)$)
- The model does not explcitly take into account voxel-wise or channel-wise or segment-wise perfusion, there is just one perfusion value
- Juxtaposition of multiple standard approache models doesn't take into account fluid dynamics of large pre-chamber
- Explicit modeling of pre-chamber and segments (voxels, channels), and of measuring the outflow concentration c_{out}(t) may be more realistic

interaction volumes

Alternative:

/SL outflow concentation & multiple compartments

- Each compartment *i* has:
 - Volume V_i
 - Flow rate q_i
 - Inlet concentration from predecessor
 - Outlet concentration $c_i(t)$
 - Impulse response function $h_i(t)$
 - Mean transit time T_i
 - Tissue delay factor d
 - Perfusion $f_i = \frac{q_i}{V_i} = \frac{d}{T_i}$
- Of interest may be ratio $r = \frac{f_1}{f_2}$ (or $r' = \frac{f_{01}}{f_{02}}$)
- Additional assumptions:
 - Existence of a constant tissue delay factor d, such that T = d V/q
 - Known compartment volumes V_0 , V_1 and V_2 (or volume fractions)

inner segment

outer

$$c_{i} = h_{0i} * c_{in} \qquad h_{0i} = (h_{i} * h_{0})$$

$$T_{0i} = \int_{0}^{\infty} t h_{0i}(t) dt \qquad T_{0i} = T_{0} + T_{i}$$

$$f_{0i} = \frac{d}{T_{0i}} \qquad f_{i} = \frac{d}{T_{i}} = \frac{q_{i}}{V_{i}}$$

$$T_{01} = \frac{d V_0}{q_{in}} + \frac{d V_1}{q_1}$$
$$T_{02} = \frac{d V_0}{q_{in}} + \frac{d V_2}{q_2}$$

 $q_{\rm in} = q_1 + q_2$

Dutch

Metrology Institute

L Application to phantom data

- Good reconstruction of global perfusion rate value (1 to 5 mL/min/g)
- Estimate of ratio of local perfusion rate through two segments not any better than following standard approach ⊗
- Many voxels towards edge needed to be discarded
- Various effects of differences in the data analysis approaches mixed in this analysis
- Other non-ideal phenomena (e.g. non-ideal mixing) have their influence as well

q₀ ^{ref} / (mL/min)	r ^A	r ^B
55	0.89	0.79
110	0.79	0.82
165	0.85	0.87
220	0.91	0.92
275	0.82	0.85

 $r^{ref} = 0.87 \pm 0.05$

Dutch

Metrology Institute

- Project partners are finishing a comparison with the phantom using different modalities (MRI, CT, PET)
- Separation of various effects involving the different data analysis methods using simulated data
 - Be there (again) @LNEC for MATHMET conference 20 22 November 2019!
- Application to patient data of alternative method (but turns out to be too time consuming for this project)
- Final meeting & public engagement event @ KCL London on Thursday 29 August 2019

The project 15HLT05 PerfusImaging has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Dutch

Metrology

Institute

Flow Standard for Perfu